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= = By writing out the first few terms of (4), you
can see that it is the same as (3). To obtain (4)
we replaced n by n + 2 and began the sum-
mation at 0 instead of 2.

USING SERIES TO SOLVE DIFFERENTIAL EQUATIONS

Many differential equations can’t be solved explicitly in terms of finite combinations of
simple familiar functions. This is true even for a simple-looking equation like

1] Y= 2xy' +y=0
But it is important to be able to solve equations such as Equation 1 because they arise from
physical problems and, in particular, in connection with the Schrédinger equation in quan-

tum mechanics. In such a case we use the method of power series; that is, we look for a
solution of the form

y=fx) =D cx"=co+cax+ cxt+exd+ .-
n=0

The method is to substitute this expression into the differential equation and determine the
values of the coefficients ¢y, ¢, ¢a, . . . .

Before using power series to solve Equation 1, we illustrate the method on the simpler
equation y” + y = 0 in Example 1.

EXAMPLE 1 Use power series to solve the equation y” + y = 0.

SOLUTION We assume there is a solution of the form
[2] y=co+ cx+exttextt o= cx"

We can differentiate power series term by term, so

1

DM

Y =c +20x +3cx*+ - = ) ne,x™

n=1

0

(3] V'=2c+2-3cax+ = > n(n — De,x"2

n=2

In order to compare the expressions for y and y” more easily, we rewrite y” as follows:

(4] Y= (n+2)n+ Dcpax”

n=0

Substituting the expressions in Equations 2 and 4 into the differential equation, we
obtain

S+ 2+ Degerx” + 3 eax” =0

n=0 n=0
or
[5] S [(n+2)n+ Degnr + ca]x" =0
n=0

If two power series are equal, then the corresponding coefficients must be equal. There-
fore, the coefficients of x" in Equation 5 must be 0:

n+2)n+ Depsa+c, =0
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Cn

* )

n=20,1,2,3,...

Equation 6 is called a recursion relation. If ¢y and ¢, are known, this equation allows

us to determine the remaining coefficients recursively by putting n = 0, 1,2, 3, ... in
succession.
Co
Putn = 0: = ——F
ut n 2 -2
Cy
Putn = 1: = —
utn C3 2.3
Putn = 2: cy = — @ _ e -
3.4 1-2:-3-4 4!
3 Ci Ci
Putn = 3: cs = — = = —
4-5 2:3:4-5 5!
Cy Co Co
Put = 4: = — = — = ——
o “T 756 45-6 6!
Putn =5: = — S ° -4

6-7 5167 70

By now we see the pattern:

For the even coefficients, ¢, = (—1)" “
(2n)!
For the odd coefficients, ¢y,+1 = (—1)" ﬁ

Putting these values back into Equation 2, we write the solution as

y=cot+ ax+ cx*+oax’+oxt+oesx’+ -

1 v + ra + + (=1 —xzn +
— ¢ _ A . _ -
0 21 41 6! (2n)!
x} XS x7 x2n+|
+ et e ()
A TR TR T VG T
o xzn © x2n+1
= -1 + -1y
CO,ZO( ) T ,ZO( ) 2n + 1)!

Notice that there are two arbitrary constants, ¢y and c;. |

NOTE 1 = We recognize the series obtained in Example 1 as being the Maclaurin series
for cos x and sin x. (See Equations 8.7.17 and 8.7.16.) Therefore, we could write the solu-
tion as

y(x) = cocos x + ¢; sin x

But we are not usually able to express power series solutions of differential equations in
terms of known functions.
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EXAMPLE 2 Solve y” — 2xy’ + y = 0.

SOLUTION We assume there is a solution of the form

y=2 cux"
n=0
Then yl = E ncnx"_l
n=1
and y'=2nn—De,x" 2= (n+2)(n+ 1)cpax"
n=2 n=0

as in Example 1. Substituting in the differential equation, we get

Y (n+2)n+ Depax” —2x 2 neax" '+ Y ex” =0
n=1

n=0

S (n+2)n+ Depax” — X 2ncx" + 2 cux” =0
n=1

n=0 n=0

i 2nc, x" = i 2nc, x" E [((n+2)n + 1)cyss — 2n — 1), Jx" =0

n=1 n=0 =0

This equation is true if the coefficient of x" is 0:

(VL + 2)(" + l)cil+2 - (2" - l)cn = O

2n — 1
7 ht2 = T Cy =0,1,2,3,...
R P T
We solve this recursion relation by putting n = 0, 1, 2, 3, ... successively in Equation 7:
Putn = 0: S
utn : (&) 1.2C0
1
Putn = 1: 3= C
2-3
Put ) 3 3 3
utn = 2: = = - co= c
347 1:2:3-4"°° 41
Put 3 5 1-5 1-5
utn = 3: s = = = c
P 4.57 2.3.4-5"" 5 "
Put 4 7 3.7 3.7
utn = 4: = S - _
8 “Ts56“T 456 6
9 1-5-9 1-5-9
Putn = 5: c7—6 705— 5!6'761_ 7 c
p s 11 _3-7-11
utn = 6: C8_7-8C6_ 31 Co
13 1-5-9-13
Putn=7: Ccog = c; = Ci
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In general, the even coefficients are given by

3-711+ - (4n—5)
Coyp = — Co

2n)!

and the odd coefficients are given by

159« -« (4n —3)
2n + 1)!

Cont1 = Ci

The solution is

y=co+cx+coxt+ox’+oxt+

B 1,3, 3.7 3e7-11
_C"(l_z!x_mx_ o s T
I, 15 . 1:5-9  1-5-9.13
toalx + —o—x + x>+ x'+ Pag R
3! 5! 7! o1
or
N NP RV ARIR UL I
= C - X — X
Yoo 21 et (2n)!
S1-5-9«-@4n—3) ,
+ + n
C'<x ,Zl 2n + 1)! * -

NOTE2 o In Example 2 we had to assume that the differential equation had a series solu-
tion. But now we could verify directly that the function given by Equation 8 is indeed a
solution.

NOTE 3 o Unlike the situation of Example 1, the power series that arise in the solution of
Example 2 do not define elementary functions. The functions

1 23Tt (dn—5)
— 1 L2 2n
n) 2t ,22 2n)!
2159 - (4n —3)
d — + 2n+1
an »o) =x+ 2 2n + 1)!

are perfectly good functions but they can’t be expressed in terms of familiar functions. We
can use these power series expressions for y; and y, to compute approximate values of the
functions and even to graph them. Figure 1 shows the first few partial sums 7Ty, 75, T4, . . .
(Taylor polynomials) for y;(x), and we see how they converge to y;. In this way we can
graph both y, and y, in Figure 2.

NOTE 4 o If we were asked to solve the initial-value problem
y' = 2xy +y=0 y(0) =0 y'(0) =1
we would observe that
co=1y0)=0 a=y0)=1
This would simplify the calculations in Example 2, since all of the even coefficients would

be 0. The solution to the initial-value problem is

2n+1

B 159 - (4n —3)
y(x)_x+,,§1 2n + 1)!
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EXERCISES

" 2, — — Y =
[A] Click here for answers. [s] Click here for solutions. 107y =0,y =1. 10 =0

1.y 4+ x*y +xy=0, y0) =0, y(0) =1
1-11 m Use power series to solve the differential equation. . . . . . . . .

1.y —y=0 2.y =xy 12. The solution of the initial-value problem
3.y =x% 4. (x=3)y' +2y=0 Xy +xy +x’y=0  y0)=1 y0)=0
5./ +xy +y=0 6. y'=y is called a Bessel function of order 0.
Solve the initial-value problem to find a power series
. 2 + " + r_ — (a) P P
T Dy" + 5y =y =0 expansion for the Bessel function.
8.y =xy a5 (b) Graph several Taylor polynomials until you reach one that
. , , looks like a good approximation to the Bessel function on
9. )" —xy' —y=0, y0) =1 y(0)=0 the interval [—5, 5].
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ANSWERS

[s] Click here for solutions.

x3n
3"n!

= coe"z/3

= w
. ¢ — = e’ 3 ¢
n=0

n
n=0 n!

v
.

o (=1 2 o (=2)"n! 2n+1
n + n
C“ZO rm @ ZO Qn+

x2

3 (—1)"71(2}’! _ 3)!
et en ook S

2n

9. i o ="l

S (12252 - - (3n — 1)
1. x + Ikl
2 Gn + 1)1 g
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SOLUTIONS

7

1. Lety(z) = > cnz™ Theny/(x) = . nc,z™ ' and the given equation, 4’ — y = 0, becomes
n=0 n=1

OO o0 o0 o0
3 nepx™ ' — 3 cpa™ = 0. Replacing n by n + 1 in the first sum gives > (n 4 1)cpp12™ — 3 cpa™ =0, 50
n=0 n=0 n=0

o0
> [(n41)cny1 — en]a™ = 0. Equating coefficients gives (n + 1)cn+1 — ¢ = 0, so the recursion relation is
n=0

Cn 1 Co 1 1 Co 1 Co
c =——n=0,1,2,....Thenc; =co,ca ==c1 = —,c3=-C2=—-=Cy = —,C4 = —C3 = —, and
T T R DR T T |
;T CO M M = n = CO n = xn x
in general, ¢, = —. Thus, the solution is y(z) = > cna™ = 3 —a™ =co 3 — = coe”.

n: n=0 n=0 T n=0 1%
o0 oo i o0
. Assuming y(z) = Y. c,z", we have i (z) = neax” ' = 3 (n+ 1)cpq12™ and
n=0 n=1 n=0
OO o0

—z?y = — 3 cp2™™? = — 3 cn_22™. Hence, the equation y' = x?y becomes

n=0 n=2

S (n41)cpp12™ — Y cn—2z” =0o0rc1 +2c2z+ Y, [(n+ 1)cnt1 — cn—2] 2™ = 0. Equating coefficients

n=0 n=2 n=2

. Cn—
gives ci = c2 = 0and cp41 = 21 forn =2,3,.... Butcy = 0,s50cs = 0and
n

c7 = 0 and in general c3,,+1 = 0. Similarly c2 = 0 5o ¢3n+2 = 0. Finally c3 = %0,

C3 Co Co Ce Cco co co ) .
=% =70 d n:—.Th ,th lut
“=% 6.3 32.20°T 9 T 9.6.3 3.3 e 3.1 1hus, the solution is

3n 3 n
— oS} [} . X x o o0 (aj‘ /3) _ x3/3
Yy (ﬂ]‘) - nZ::O nz_:o C3n$ EO 3” 'T'L' = Co nZ::O 3! = Co nZ::O T = cg€ .

LLety (@) = X o™ = Y (z) = 3 nepx™ tandy” (x) = 3 (04 2)(n + 1)cat2x™. The differential
n=0

n=1 n=0
OO OO OO

equation becomes > (n + 2)(n 4+ 1)catoz™ +2 > nepz™ P+ > cpz™ =0 or
n=0 n=1 n=0

118

[(n+2)(n 4+ 1)cnye + nen + cnla™ (since > onepz™ =Y ncn:c"). Equating coefficients gives
n=0

0 n=1

n

—(n+1)cn _

2)(n + Den 1)en = 0, thus th ion relation is ¢4 — _ ,
(n+2)(n+1ept2+ (n+1)c us the recursion relation is ¢, 42 CETCESY) ——

. . ¢ c ¢ cq ¢
n =0,1,2,.... Then the even coefficients are given by c; = —30, c4 = _ZQ = Qfo, ="% = 3. 2 6’
, —1n" .
and in general, cz,, = (_1)n2 = CO —5n = ( 2n)n100, The odd coefficients are c3 = 3065 = —6—53 = %,
o =-2 = ‘U andin eneral, ¢ (- = - CYnta . The solution is
T T T T35t & 1 = 357 (2ntl)  @ntDl
o’) [o'e) _2 n !
():COZ( ) +CZ< )nz2n+1.

2nnl © L n+ 1)

o]

LLety(z) = 3 cpz™ Theny” = 3. n(n—1)cuz" %, 2y’ = 3 nc,z™ and

n=0 n=0 n=0

n(n—1)cpz™ + > (n+2) (n+ 1) cng22™. The differential equation becomes
0 n=0

118

(12 + 1) y// —

n

. Lo —len
[(n+2)(n+1)cnt2 + [n(n—1)+n—1]cy] 2™ = 0. The recursion relation is cp42 = —7(71” T )26
0

118

s
n
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n=0,1,2,.... Given ¢o and c1, c2 = %0,64 = —Cf = _%706 = —3—? = (- )2%,---,
11-3----- (2n —3) co 1 (2n=3)leo 1 (2n—=3)lco
n=(-1)""1 (=)t TP qynmt 2T 90
ez = (1) 2n 7l D" oy - Y oy
n=23,....c3= 0 ;1 =0 = cont1 =0forn =1,2,.... Thus the solution is
_ a? & (D" 2n=3)! 5,
y(ac) —CO+01$+CO7 +Con;2m$ .
9. Lety(z) = 3. cnpx™ Then —ay/(z) = —z 3 nea2™ ' = — 3 nepz™ = — 3 nepa”,
n=0 n=1 n=1 n=0
y'(z) = >, (n+2)(n + 1)chy22™, and the equation y”’ — zy’ — y = 0 becomes
n=0
> [(n+2)(n+ 1)cng2 — nen — cn]z™ = 0. Thus, the recursion relation is
n=20
tnyz = —nton camtl) _ _cn forn =0,1,2 One of the given conditions is
2T Gy mtl)  mt2)m+l)  nt2 TS &
S n Co 1 C2 1
y(0) = 1. Buty(0) = > cn(0)" =co+0+0+---=co,s0c0 = 1. Hence,co = — ==, ca = — = —,
n=0 2 2 4 2-4
o =2 = L Con = N The other given condition is y'(0) = 0. But
7% T 246" T 2l £ via=e
y'(0)= ncn(())"*1 =c1+0+0+---=ci1,soc; = 0. By the recursion relation, cg = 0—31 =0,c5=0,...,
n=1
cant+1 = 0 forn =0, 1, 2, .... Thus, the solution to the initial-value problem is
2n 2 n
_OO n_oo 2n_z>o x _OO (CE/2) _x2/2
Y= et = et S e T 2l €
11. Assuming that y(z) = 3 cpz™, wehavezy =2 3 coz™ = Y cpx™t,
n=20 n=0 n=20
1,2y/ :IZ Z ncnl‘nil — Z ncnxn+1’
n=1 n=0
y'(@)= 3 nn—1epz™ 2= 3 (n+3)(n+2)carsx™™  [replace n with n + 3]
n=2 n=-—1
=2co+ 3 (n+3)(n+2)cnisz"
n=0

e}
and the equation y” + zy’ 4+ zy = 0 becomes 2c2 + > [(n + 3)(n + 2)cnts + nen +cn] 2™ = 0.

n=0

. . —ncn, — C n+1)c
So c2 = 0 and the recursion relation is c,43 = - = ( Jen

n+3)n+2) (n+3)(n+2)
But ¢o = y(0) = 0 = ¢z and by the recursion relation, cg,, = cgny2 =0forn=0,1,2,....

Also, c1 =4'(0) =1, s0

,n=20,1,2,....

2c1 2 5¢4 s 245 22252
e - My (i ) L LA S
“="73° 139" 76 Vigasz Vg
2252..... —1)2 o
e3nt1 = (—1)" > (3n—|—(317)L' ).Thus,thesolutlonls
2252 .... (3n _ 1)2x3n+1






